AI

Conformalization of Sparse Generalized Linear Models

1 Mins read

Given a sequence of observable variables , the conformal prediction method estimates a confidence set for given that is valid for any finite sample size by merely assuming that the joint distribution of the data is permutation invariant. Although attractive, computing such a set is computationally infeasible in most regression problems. Indeed, in these cases, the unknown variable can take an infinite number of possible candidate values, and generating conformal sets requires retraining a predictive model for each candidate. In this paper, we focus on a sparse linear model with only a subset of variables for prediction and use numerical continuation techniques to approximate the solution path efficiently. The critical property we exploit is that the set of selected variables is invariant under a small perturbation of the input data. Therefore, it is sufficient to enumerate and refit the model only at the change points of the set of active features and smoothly interpolate the rest of the solution via a Predictor-Corrector mechanism. We show how our path-following algorithm accurately approximates conformal prediction sets and illustrate its performance using synthetic and real data examples.


Source link

Related posts
AI

The humans behind the robots

2 Mins read
That’s the question at the center of my story for our magazine, published online today, on whether we will trust humanoid robots…
AI

Top 25 AI Tools for Increasing Sales in 2025

6 Mins read
The business landscape is undergoing a profound transformation, driven by artificial intelligence technologies that are reshaping how companies approach sales and customer…
AI

Meet OREO (Offline REasoning Optimization): An Offline Reinforcement Learning Method for Enhancing LLM Multi-Step Reasoning

3 Mins read
Large Language Models (LLMs) have demonstrated impressive proficiency in numerous tasks, but their ability to perform multi-step reasoning remains a significant challenge….

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *