AI

Five MIT faculty members take on Cancer Grand Challenges | MIT News

2 Mins read


Cancer Grand Challenges recently announced five winning teams for 2024, which included five researchers from MIT: Michael Birnbaum, Regina Barzilay, Brandon DeKosky, Seychelle Vos, and Ömer Yilmaz. Each team is made up of interdisciplinary cancer researchers from across the globe and will be awarded $25 million over five years. 

Birnbaum, an associate professor in the Department of Biological Engineering, leads Team MATCHMAKERS and is joined by co-investigators Barzilay, the School of Engineering Distinguished Professor for AI and Health in the Department of Electrical Engineering and Computer Science and the AI faculty lead at the MIT Abdul Latif Jameel Clinic for Machine Learning in Health; and DeKosky, Phillip and Susan Ragon Career Development Professor of Chemical Engineering. All three are also affiliates of the Koch Institute for Integrative Cancer Research At MIT.

Team MATCHMAKERS will take advantage of recent advances in artificial intelligence to develop tools for personalized immunotherapies for cancer patients. Cancer immunotherapies, which recruit the patient’s own immune system against the disease, have transformed treatment for some cancers, but not for all types and not for all patients. 

T cells are one target for immunotherapies because of their central role in the immune response. These immune cells use receptors on their surface to recognize protein fragments called antigens on cancer cells. Once T cells attach to cancer antigens, they mark them for destruction by the immune system. However, T cell receptors are exceptionally diverse within one person’s immune system and from person to person, making it difficult to predict how any one cancer patient will respond to an immunotherapy.  

Team MATCHMAKERS will collect data on T cell receptors and the different antigens they target and build computer models to predict antigen recognition by different T cell receptors. The team’s overarching goal is to develop tools for predicting T cell recognition with simple clinical lab tests and designing antigen-specific immunotherapies. “If successful, what we learn on our team could help transform prediction of T cell receptor recognition from something that is only possible in a few sophisticated laboratories in the world, for a few people at a time, into a routine process,” says Birnbaum. 

“The MATCHMAKERS project draws on MIT’s long tradition of developing cutting-edge artificial intelligence tools for the benefit of society,” comments Ryan Schoenfeld, CEO of The Mark Foundation for Cancer Research. “Their approach to optimizing immunotherapy for cancer and many other diseases is exemplary of the type of interdisciplinary research The Mark Foundation prioritizes supporting.” In addition to The Mark Foundation, the MATCHMAKERS team is funded by Cancer Research UK and the U.S. National Cancer Institute.

Vos, the Robert A. Swanson (1969) Career Development Professor of Life Sciences and HHMI Freeman Hrabowksi Scholar in the Department of Biology, will be a co-investigator on Team KOODAC. The KOODAC team will develop new treatments for solid tumors in children, using protein degradation strategies to target previously “undruggable” drivers of cancers. KOODAC is funded by Cancer Research UK, France’s Institut National Du Cancer, and KiKa (Children Cancer Free Foundation) through Cancer Grand Challenges. 

As a co-investigator on team PROSPECT, Yilmaz, who is also a Koch Institute affiliate, will help address early-onset colorectal cancers, an emerging global problem among individuals younger than 50 years. The team seeks to elucidate pathways, risk factors, and molecules involved in the disease’s development. Team PROSPECT is supported by Cancer Research UK, the U.S. National Cancer Institute, the Bowelbabe Fund for Cancer Research UK, and France’s Institut National Du Cancer through Cancer Grand Challenges.  


Source link

Related posts
AI

AI2BMD: A Quantum-Accurate Machine Learning Approach for Large-Scale Biomolecular Dynamics

3 Mins read
Biomolecular dynamics simulations are crucial for life sciences, offering insights into molecular interactions. While classical molecular dynamics (MD) simulations are efficient, they…
AI

Mixtures of In-Context Learners: A Robust AI Solution for Managing Memory Constraints and Improving Classification Accuracy in Transformer-Based NLP Models

3 Mins read
Natural language processing (NLP) continues to evolve with new methods like in-context learning (ICL), which offers innovative ways to enhance large language…
AI

WEBRL: A Self-Evolving Online Curriculum Reinforcement Learning Framework for Training High-Performance Web Agents with Open LLMs

3 Mins read
Large language models (LLMs) have shown exceptional capabilities in comprehending human language, reasoning, and knowledge acquisition, suggesting their potential to serve as…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *