AI

AGRaME: Any Granularity Ranking with Multi-Vector Embeddings

1 Mins read

Ranking is a fundamental and popular problem in search. However, existing ranking algorithms usually restrict the granularity of ranking to full passages or require a specific dense index for each desired level of granularity. Such lack of flexibility in granularity negatively affects many applications that can benefit from more granular ranking, such as sentence-level ranking for open-domain question-answering, or proposition-level ranking for attribution. In this work, we introduce the idea of any-granularity ranking which leverages multi-vector approaches to rank at varying levels of granularity while maintaining encoding at a single (coarser) level of granularity. We propose a multi-granular contrastive loss for training multi-vector approaches, and validate its utility with both sentences and propositions as ranking units. Finally, we demonstrate the application of proposition-level ranking to post-hoc citation addition in retrieval-augmented generation, surpassing the performance of prompt-driven citation generation.


Source link

Related posts
AI

Chain-of-Associated-Thoughts (CoAT): An AI Framework to Enhance LLM Reasoning

3 Mins read
Large language models (LLMs) have revolutionized artificial intelligence by demonstrating remarkable capabilities in text generation and problem-solving. However, a critical limitation persists…
AI

Validation technique could help scientists make more accurate forecasts | MIT News

4 Mins read
Should you grab your umbrella before you walk out the door? Checking the weather forecast beforehand will only be helpful if that…
AI

Prime Intellect Releases SYNTHETIC-1: An Open-Source Dataset Consisting of 1.4M Curated Tasks Spanning Math, Coding, Software Engineering, STEM, and Synthetic Code Understanding

2 Mins read
In artificial intelligence and machine learning, high-quality datasets play a crucial role in developing accurate and reliable models. However, collecting extensive, verified…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *