AI

Classifier-Free Guidance Is a Predictor-Corrector

1 Mins read

We investigate the unreasonable effectiveness of classifier-free guidance (CFG).
CFG is the dominant method of conditional sampling for text-to-image diffusion models, yet
unlike other aspects of diffusion, it remains on shaky theoretical footing. In this paper, we disprove common misconceptions, by showing that CFG interacts differently with DDPM and DDIM, and neither sampler with CFG generates the gamma-powered distribution.
Then, we clarify the behavior of CFG by showing that it is a kind of Predictor-Corrector (PC) method that alternates between denoising and sharpening, which we call Predictor-Corrector Guidance (PCG).
We show that in the SDE limit, DDPM-CFG is equivalent to PCG
with a DDIM predictor applied to the conditional distribution, and Langevin dynamics corrector applied to a gamma-powered distribution. While the standard PC corrector applies to the conditional distribution and improves sampling accuracy, our corrector sharpens the distribution.


Source link

Related posts
AI

CogVLM2: Advancing Multimodal Visual Language Models for Enhanced Image, Video Understanding, and Temporal Grounding in Open-Source Applications

3 Mins read
Large Language Models (LLMs), initially limited to text-based processing, faced significant challenges in comprehending visual data. This limitation led to the development…
AI

Top Large Language Models (LLMs): A Comprehensive Ranking of AI Giants Across 13 Metrics Including Multitask Reasoning, Coding, Math, Latency, Zero-Shot and Few-Shot Learning, and Many More

8 Mins read
The competition to develop the most advanced Large Language Models (LLMs) has seen major advancements, with the four AI giants, OpenAI, Meta,…
AI

This AI Paper from Apple Introduces AdEMAMix: A Novel Optimization Approach Leveraging Dual Exponential Moving Averages to Enhance Gradient Efficiency and Improve Large-Scale Model Training Performance

4 Mins read
Machine learning has made significant advancements, particularly through deep learning techniques. These advancements rely heavily on optimization algorithms to train large-scale models…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *