AI

Compact Neural TTS Voices for Accessibility

1 Mins read

Contemporary text-to-speech solutions for accessibility applications can typically be classified into two categories: (i) device-based statistical parametric speech synthesis (SPSS) or unit selection (USEL) and (ii) cloud-based neural TTS. SPSS and USEL offer low latency and low disk footprint at the expense of naturalness and audio quality. Cloud-based neural TTS systems provide significantly better audio quality and naturalness but regress in terms of latency and responsiveness, rendering these impractical for real-world applications. More recently, neural TTS models were made deployable to run on handheld devices. Nevertheless, latency remains higher than SPSS and USEL, while disk footprint prohibits pre-installation for multiple voices at once. In this work, we describe a high-quality compact neural TTS system achieving latency on the order of 15 ms with low disk footprint. The proposed solution is capable of running on low-power devices.


Source link

Related posts
AI

Key features & Benefits in 2025

7 Mins read
Network planning tools help businesses optimize performance, manage resources efficiently, and ensure scalable, reliable network designs for growth and stability. To help,…
AI

Major Providers Comparison in 2025

5 Mins read
We analyzed top 15 LLMs and their input/output pricing options along with their performance. LLM API pricing can be complex and depends…
AI

This artist collaborates with AI and robots

3 Mins read
“[Chung] comes from drawing, and then they start to work with AI, but not like we’ve seen in this generative AI movement…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *