AI

Google DeepMind’s new AI system can solve complex geometry problems

1 Mins read

To train AlphaGeometry’s language model, the researchers had to create their own training data to compensate for the scarcity of existing geometric data. They generated nearly half a billion random geometric diagrams and fed them to the symbolic engine. This engine analyzed each diagram and produced statements about their properties. These statements were organized into 100 million synthetic proofs to train the language model.

Roman Yampolskiy, an associate professor of computer science and engineering at the University of Louisville who was not involved in the research, says that AlphaGeometry’s ability shows a significant advancement toward more “sophisticated, human-like problem-solving skills in machines.” 

“Beyond mathematics, its implications span across fields that rely on geometric problem-solving, such as computer vision, architecture, and even theoretical physics,” said Yampoliskiy in an email.

However, there is room for improvement. While AlphaGeometry can solve problems found in  “elementary” mathematics, it remains unable to grapple with the sorts of advanced, abstract problems taught at university.

“Mathematicians would be really interested if AI can solve problems that are posed in research mathematics, perhaps by having new mathematical insights,” said van Doorn.

Wang says the goal is to apply a similar approach to broader math fields. “Geometry is just an example for us to demonstrate that we are on the verge of AI being able to do deep reasoning,” he says.


Source link

Related posts
AI

Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization

1 Mins read
Learning with identical train and test distributions has been extensively investigated both practically and theoretically. Much remains to be understood, however, in…
AI

Microsoft Research Introduces Reducio-DiT: Enhancing Video Generation Efficiency with Advanced Compression

3 Mins read
Recent advancements in video generation models have enabled the production of high-quality, realistic video clips. However, these models face challenges in scaling…
AI

Faster Algorithms for User-Level Private Stochastic Convex Optimization

1 Mins read
We study private stochastic convex optimization (SCO) under user-level differential privacy (DP) constraints. In this setting, there are nnn users, each possessing…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *