AI

How to opt out of Meta’s AI training

1 Mins read

Internet data scraping is one of the biggest fights in AI right now. Tech companies argue that anything on the public internet is fair game, but they are facing a barrage of lawsuits over their data practices and copyright. It will likely take years until clear rules are in place. 

In the meantime, they are running out of training data to build even bigger, more powerful models, and to Meta, your posts are a gold mine. 

If you’re uncomfortable with having Meta use your personal information and intellectual property to train its AI models in perpetuity, consider opting out. Although Meta does not guarantee it will allow this, it does say it will “review objection requests in accordance with relevant data protection laws.” 

What that means for US users

Users in the US or other countries without national data privacy laws don’t have any foolproof ways to prevent Meta from using their data to train AI, which has likely already been used for such purposes. Meta does not have an opt-out feature for people living in these places. 

A spokesperson for Meta says it does not use the content of people’s private messages to each other to train AI. However, public social media posts are seen as fair game and can be hoovered up into AI training data sets by anyone. Users who don’t want that can set their account settings to private to minimize the risk. 

The company has built in-platform tools that allow people to delete their personal information from chats with Meta AI, the spokesperson says.

How users in Europe and the UK can opt out 

Users in the European Union and the UK, which are protected by strict data protection regimes, have the right to object to their data being scraped, so they can opt out more easily. 

If you have a Facebook account:

1. Log in to your account. You can access the new privacy policy by following this link. At the very top of the page, you should see a box that says “Learn more about your right to object.” Click on that link, or here


Source link

Related posts
AI

AI2BMD: A Quantum-Accurate Machine Learning Approach for Large-Scale Biomolecular Dynamics

3 Mins read
Biomolecular dynamics simulations are crucial for life sciences, offering insights into molecular interactions. While classical molecular dynamics (MD) simulations are efficient, they…
AI

Mixtures of In-Context Learners: A Robust AI Solution for Managing Memory Constraints and Improving Classification Accuracy in Transformer-Based NLP Models

3 Mins read
Natural language processing (NLP) continues to evolve with new methods like in-context learning (ICL), which offers innovative ways to enhance large language…
AI

WEBRL: A Self-Evolving Online Curriculum Reinforcement Learning Framework for Training High-Performance Web Agents with Open LLMs

3 Mins read
Large language models (LLMs) have shown exceptional capabilities in comprehending human language, reasoning, and knowledge acquisition, suggesting their potential to serve as…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *