AI

MARRS: Multimodal Reference Resolution System

1 Mins read

*= All authors listed contributed equally to this work

Successfully handling context is essential for any dialog understanding task. This context maybe be conversational (relying on previous user queries or system responses), visual (relying on what the user sees, for example, on their screen), or background (based on signals such as a ringing alarm or playing music). In this work, we present an overview of MARRS, or Multimodal Reference Resolution System, an on-device framework within a Natural Language Understanding system, responsible for handling conversational, visual and background context. In particular, we present different machine learning models to enable handing contextual queries; specifically, one to enable reference resolution, and one to handle context via query rewriting. We also describe how these models complement each other to form a unified, coherent, lightweight system that can understand context while preserving user privacy.


Source link

Related posts
AI

Top 6 Data Governance Case Studies with Real-life Examples

7 Mins read
Data governance is an effective strategy for developing internal data standards and policies that govern who has access to data, and how…
AI

Top 10 Cloud Security Posture Management (CSPM) Vendors

8 Mins read
Considering market presence, cloud coverage, compliance support and usability here are the top 10 CSPM vendors that can help your organization minimize…
AI

Absci Bio Releases IgDesign: A Deep Learning Approach Transforming Antibody Design with Inverse Folding

3 Mins read
Designing antibodies with high specificity and binding affinity to diverse therapeutic antigens remains a significant challenge in drug development. Current methods struggle…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *