AI

Matching Latent Encoding for Audio-Text based Keyword Spotting

1 Mins read

Using audio and text embeddings jointly for Keyword Spotting (KWS) has shown high-quality results, but the key challenge of how to semantically align two embeddings for multi-word keywords of different sequence lengths remains largely unsolved. In this paper, we propose an audio-text-based end-to-end model architecture for flexible keyword spotting (KWS), which builds upon learned audio and text embeddings. Our architecture uses a novel dynamic programming-based algorithm, Dynamic Sequence Partitioning (DSP), to optimally partition the audio sequence into the same length as the word-based text sequence using the monotonic alignment of spoken content. Our proposed model consists of an encoder block to get audio and text embeddings, a projector block to project individual embeddings to a common latent space, and an audio-text aligner containing a novel DSP algorithm, which aligns the audio and text embeddings to determine if the spoken content is the same as the text. Experimental results show that our DSP is more effective than other partitioning schemes, and the proposed architecture outperformed the state-of-the-art results on the public dataset in terms of Area Under the ROC Curve (AUC) and Equal-Error-Rate (EER) by 14.4 % and 28.9%, respectively.


Source link

Related posts
AI

Google AI Releases Gemini 2.0 Flash: A New AI Model that is 2x Faster than Gemini 1.5 Pro

2 Mins read
Google AI Research introduces Gemini 2.0 Flash, the latest iteration of its Gemini AI model. This release focuses on performance improvements, notably…
AI

Microsoft Research Introduces AI-Powered Carbon Budgeting Method: A Real-Time Approach to Tracking Global Carbon Sinks and Emission

3 Mins read
Since the Industrial Revolution, burning fossil fuels and changes in land use, especially deforestation, have driven the rise in atmospheric carbon dioxide…
AI

Evaluating Gender Bias Transfer between Pre-trained and Prompt-Adapted Language Models

1 Mins read
*Equal Contributors Large language models (LLMs) are increasingly being adapted to achieve task-specificity for deployment in real-world decision systems. Several previous works…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *