AI

Meet the 2023-24 Accenture Fellows | MIT News

4 Mins read


The MIT and Accenture Convergence Initiative for Industry and Technology has selected five new research fellows for 2023-24. Now in its third year, the initiative underscores the ways in which industry and research can collaborate to spur technological innovation.

Through its partnership with the School of Engineering, Accenture provides five annual fellowships awarded to graduate students with the aim of generating powerful new insights on the convergence of business and technology with the potential to transform society. The 2023-24 fellows will conduct research in areas including artificial intelligence, sustainability, and robotics.

The 2023-24 Accenture Fellows are:

Yiyue Luo

Yiyue Luo is a PhD candidate who is developing innovative integrations of tactile sensing and haptics, interactive sensing and AI, digital fabrication, and smart wearables. Her work takes advantage of recent advances in digital manufacturing and AI, and the convergence in advanced sensing and actuation mechanisms, scalable digital manufacturing, and emerging computational techniques, with the goal of creating novel sensing and actuation devices that revolutionize interactions between people and their environments. In past projects, Luo has developed tactile sensing apparel including socks, gloves, and vests, as well as a workflow for computationally designing and digitally fabricating soft textiles-based pneumatic actuators. With the support of an Accenture Fellowship, she will advance her work of combining sensing and actuating devices and explore the development of haptic devices that simulate tactile cues captured by tactile sensors. Her ultimate aim is to build a scalable, textile-based, closed-loop human-machine interface. Luo’s research holds exciting potential to advance ground-breaking applications for smart textiles, health care, artificial and virtual reality, human-machine interactions, and robotics.

Zanele Munyikwa is a PhD candidate whose research explores foundation models, a class of models that forms the basis of transformative general-purpose technologies (GPTs) such as GPT4. An Accenture Fellowship will enable Munyikwa to conduct research aimed at illuminating the current and potential impact of foundation models (including large language models) on work and tasks common to “high-skilled” knowledge workers in industries such as marketing, legal services, and medicine, in which foundation models are expected to have significant economic and social impacts. A primary goal of her project is to observe the impact of AI augmentation on tasks like copywriting and long-form writing. A second aim is to explore two primary ways that foundation models are driving the convergence of creative and technological industries, namely: reducing the cost of content generation and enabling the development of tools and platforms for education and training. Munyikwa’s work has important implications for the use of foundation models in many fields, from health care and education to legal services, business, and technology.

Michelle Vaccaro is a PhD candidate in social engineering systems whose research explores human-AI collaboration with the goals of developing a deeper understanding of AI-based technologies (including ChatGPT and DALL-E), evaluating their performance and evolution, and steering their development toward societally beneficial applications, like climate change mitigation. An Accenture Fellowship will support Vaccaro’s current work toward two key objectives: identifying synergies between humans and AI-based software to help design human-AI systems that address persistent problems better than existing approaches; and investigating applications of human-AI collaboration for forecasting technological change, specifically for renewable energy technologies. By integrating the historically distinct domains of AI, systems engineering, and cognitive science with a wide range of industries, technical fields, and social applications, Vaccaro’s work has the potential to advance individual and collective productivity and creativity in all these areas.

Chonghuan Wang is a PhD candidate in computational science and engineering whose research employs statistical learning, econometrics theory, and experimental design to create efficient, reliable, and sustainable field experiments in various domains. In his current work, Wang is applying statistical learning techniques such as online learning and bandit theory to test the effectiveness of new treatments, vaccinations, and health care interventions. With the support of an Accenture Fellowship, he will design experiments with the specific aim of understanding the trade-off between the loss of a patient’s welfare and the accuracy of estimating the treatment effect. The results of this research could help to save lives and contain disease outbreaks during pandemics like Covid-19. The benefits of enhanced experiment design and the collection of high-quality data extend well beyond health care; for example, these tools could help businesses optimize user engagement, test pricing impacts, and increase the usage of platforms and services. Wang’s research holds exciting potential to harness statistical learning, econometrics theory, and experimental design in support of strong businesses and the greater social good.

Aaron Michael West Jr. is a PhD candidate whose research seeks to enhance our knowledge of human motor control and robotics. His work aims to advance rehabilitation technologies and prosthetic devices, as well as improve robot dexterity. His previous work has yielded valuable insights into the human ability to extract information solely from visual displays. Specifically, he demonstrated humans’ ability to estimate stiffness based solely on the visual observation of motion. These insights could advance the development of software applications with the same capability (e.g., using machine learning methods applied to video data) and may enable roboticists to develop enhanced motion control such that a robot’s intention is perceivable by humans. An Accenture Fellowship will enable West to continue this work, as well as new investigations into the functionality of the human hand to aid in the design of a prosthetic hand that better replicates human dexterity. By advancing understandings of human bio- and neuro-mechanics, West’s work has the potential to support major advances in robotics and rehabilitation technologies, with profound impacts on human health and well-being.


Source link

Related posts
AI

DPAdapter: A New Technique Designed to Amplify the Model Performance of Differentially Private Machine Learning DPML Algorithms by Enhancing Parameter Robustness

3 Mins read
Privacy in machine learning is critical, especially when models are trained on sensitive data. Differential privacy (DP) offers a framework to protect…
AI

Buster: A Modern Analytics Platform for AI-Powered Data Applications

2 Mins read
In today’s data-driven world, organizations are overwhelmed with large and diverse datasets that require extensive cleaning, transformation, and analysis to extract meaningful…
AI

LibMOON: A Gradient-Based Multiobjective Optimization Library for Large-Scale Machine Learning

4 Mins read
Multiobjective optimization (MOO) is pivotal in machine learning, enabling researchers to balance multiple conflicting objectives in real-world applications. These applications include robotics,…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *