AI

Merge Vision Foundation Models via Multi-Task Distillation

1 Mins read

[ad_1]

As the repository of publicly available pre-trained vision foundation models (VFMs) — such as CLIP, DINOv2, and SAM — grows, users face challenges in storage, memory, and computational efficiency when deploying multiple models concurrently. To address these concerns, we introduce a unique approach that merges the capabilities of multiple VFMs into a single efficient multi-task model. Our method, termed “joint distillation,” seamlessly integrates teacher-student learning with self-distillation, operating with just unlabeled image data and drastically cutting down on computational requirements compared to traditional multi-task learning. In a practical demonstration of merging CLIP and SAM, we reveal that the resultant merged model, SAM-CLIP, not only maintains the foundational strengths of both parent models but also uncovers synergistic functions, such as text-prompted zero-shot segmentation. Given the increasing availability of VFMs, our methodology promises to deliver significant value in streamlining model deployment and operations.

[ad_2]
Source link

Related posts
AI

GENAUDIT: A Machine Learning Tool to Assist Users in Fact-Checking LLM-Generated Outputs Against Inputs with Evidence

2 Mins read
[ad_1] With the recent progress made in the field of Artificial Intelligence (AI) and mainly Generative AI, the ability of Large Language…
AI

This AI Paper from the University of Oxford Proposes Magi: A Machine Learning Tool to Make Manga Accessible to the Visually Impaired

2 Mins read
[ad_1] In storytelling, Japanese comics, known as Manga, have carved out a significant niche, captivating audiences worldwide with their intricate plots and…
AI

The Dawn of Grok-1: A Leap Forward in AI Accessibility

2 Mins read
[ad_1] In an era where the democratization of artificial intelligence technology stands as a pivotal turning point for innovation across industries, xAI…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *