AI

Resource-constrained Stereo Singing Voice Cancellation

1 Mins read

We study the problem of stereo singing voice cancellation, a subtask of music source separation, whose goal is to estimate an instrumental background from a stereo mix. We explore how to achieve performance similar to large state-of-the-art source separation networks starting from a small, efficient model for real-time speech separation. Such a model is useful when memory and compute are limited and singing voice processing has to run with limited look-ahead. In practice, this is realised by adapting an existing mono model to handle stereo input. Improvements in quality are obtained by tuning model parameters and expanding the training set. Moreover, we highlight the benefits a stereo model brings by introducing a new metric which detects attenuation inconsistencies between channels. Our approach is evaluated using objective offline metrics and a large-scale MUSHRA trial, confirming the effectiveness of our techniques in stringent listening tests.


Source link

Related posts
AI

Tsinghua University Researchers Just Open-Sourced CogAgent-9B-20241220: The Latest Version of CogAgent

3 Mins read
Graphical User Interfaces (GUIs) are central to how users engage with software. However, building intelligent agents capable of effectively navigating GUIs has…
AI

This Machine Learning Research from Amazon Introduces a New Open-Source High-Fidelity Dataset for Automotive Aerodynamics

3 Mins read
One of the most critical challenges in computational fluid dynamics (CFD) and machine learning (ML) is that high-resolution, 3D datasets specifically designed…
AI

Meet ONI: A Distributed Architecture for Simultaneous Reinforcement Learning Policy and Intrinsic Reward Learning with LLM Feedback

3 Mins read
Reward functions play a crucial role in reinforcement learning (RL) systems, but their design presents significant challenges in balancing task definition simplicity…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *