AI

Revisiting Non-separable Binary Classification and its Applications in Anomaly Detection

1 Mins read

The inability to linearly classify XOR has motivated much of deep learning. We revisit this age-old problem and show that linear classification of XOR is indeed possible. Instead of separating data between halfspaces, we propose a slightly different paradigm, equality separation, that adapts the SVM objective to distinguish data within or outside the margin. Our classifier can then be integrated into neural network pipelines with a smooth approximation. From its properties, we intuit that equality separation is suitable for anomaly detection. To formalize this notion, we introduce closing numbers, a quantitative measure on the capacity for classifiers to form closed decision regions for anomaly detection. Springboarding from this theoretical connection between binary classification and anomaly detection, we test our hypothesis on supervised anomaly detection experiments, showing that equality separation can detect both seen and unseen anomalies.


Source link

Related posts
AI

Tsinghua University Researchers Just Open-Sourced CogAgent-9B-20241220: The Latest Version of CogAgent

3 Mins read
Graphical User Interfaces (GUIs) are central to how users engage with software. However, building intelligent agents capable of effectively navigating GUIs has…
AI

This Machine Learning Research from Amazon Introduces a New Open-Source High-Fidelity Dataset for Automotive Aerodynamics

3 Mins read
One of the most critical challenges in computational fluid dynamics (CFD) and machine learning (ML) is that high-resolution, 3D datasets specifically designed…
AI

Meet ONI: A Distributed Architecture for Simultaneous Reinforcement Learning Policy and Intrinsic Reward Learning with LLM Feedback

3 Mins read
Reward functions play a crucial role in reinforcement learning (RL) systems, but their design presents significant challenges in balancing task definition simplicity…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *