AI

Smart Audit System Empowered by LLM

1 Mins read

Manufacturing quality audits are pivotal for ensuring high product standards in mass production environments. Traditional auditing processes, however, are labor-intensive and heavily reliant on human expertise, posing challenges in maintaining transparency, accountability, and continuous improvement across complex global supply chains. To address these challenges, we propose a smart audit system empowered by large language models (LLMs). Our approach introduces three key innovations: a dynamic risk assessment model that streamlines audit procedures and optimizes resource allocation; a manufacturing compliance copilot that enhances data processing, retrieval, and evaluation for a self-evolving manufacturing knowledge base; and a Re-act framework commonality Analysis agent that provides real-time, customized analysis to empower engineers with insights for supplier improvement. These enhancements significantly elevate audit efficiency and effectiveness, with testing scenarios demonstrating an improvement of over 24%.


Source link

Related posts
AI

Chain-of-Associated-Thoughts (CoAT): An AI Framework to Enhance LLM Reasoning

3 Mins read
Large language models (LLMs) have revolutionized artificial intelligence by demonstrating remarkable capabilities in text generation and problem-solving. However, a critical limitation persists…
AI

Validation technique could help scientists make more accurate forecasts | MIT News

4 Mins read
Should you grab your umbrella before you walk out the door? Checking the weather forecast beforehand will only be helpful if that…
AI

Prime Intellect Releases SYNTHETIC-1: An Open-Source Dataset Consisting of 1.4M Curated Tasks Spanning Math, Coding, Software Engineering, STEM, and Synthetic Code Understanding

2 Mins read
In artificial intelligence and machine learning, high-quality datasets play a crucial role in developing accurate and reliable models. However, collecting extensive, verified…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *