AI

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

1 Mins read

We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the heuristics of prior works and achieves state of the art results by using the advantages of scale. By training a diffusion generative model directly on 3D atomic positions without making assumptions about the explicit structure of molecules (e.g. modeling torsional angles) we are able to radically simplify structure learning, and make it trivial to scale up the model sizes. This model, called Molecular Conformer Fields (MCF), works by parameterizing conformer structures as functions that map elements from a molecular graph directly to their 3D location in space. This formulation allows us to boil down the essence of structure prediction to learning a distribution over functions. Experimental results show that scaling up the model capacity leads to large gains in generalization performance without enforcing inductive biases like rotational equivariance. MCF represents an advance in extending diffusion models to handle complex scientific problems in a conceptually simple, scalable and effective manner.


Source link

Related posts
AI

This AI Paper by Inria Introduces the Tree of Problems: A Simple Yet Effective Framework for Complex Reasoning in Language Models

3 Mins read
Large language models (LLMs) have revolutionized natural language processing by making strides in text generation, summarization, and translation. Even though they excel…
AI

Exploring Adaptive Data Structures: Machine Learning’s Role in Designing Efficient, Scalable Solutions for Complex Data Retrieval Tasks

4 Mins read
Machine learning research has advanced toward models that can autonomously design and discover data structures tailored to specific computational tasks, such as…
AI

Researchers from Stanford and Cornell Introduce APRICOT: A Novel AI Approach that Merges LLM-based Bayesian Active Preference Learning with Constraint-Aware Task Planning

3 Mins read
In the rapidly evolving field of household robotics, a significant challenge has emerged in executing personalized organizational tasks, such as arranging groceries…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *