AI

Towards Cross-Cultural Machine Translation with Retrieval-Augmented Generation from Multilingual Knowledge Graphs

1 Mins read

Translating text that contains entity names is a challenging task, as cultural-related references can vary significantly across languages. These variations may also be caused by transcreation, an adaptation process that entails more than transliteration and word-for-word translation. In this paper, we address the problem of cross-cultural translation on two fronts: (i) we introduce XC-Translate, the first large-scale, manually-created benchmark for machine translation that focuses on text that contains potentially culturally-nuanced entity names, and (ii) we propose KG-MT, a novel end-to-end method to integrate information from a multilingual knowledge graph into a neural machine translation model by leveraging a dense retrieval mechanism. Our experiments and analyses show that current machine translation systems and large language models still struggle to translate texts containing entity names, whereas KG-MT outperforms state-of-the-art approaches by a large margin, obtaining a 129% and 62% relative improvement compared to NLLB-200 and GPT-4, respectively.


Source link

Related posts
AI

Hugging Face Releases OlympicCoder: A Series of Open Reasoning AI Models that can Solve Olympiad-Level Programming Problems

3 Mins read
In the realm of competitive programming, both human participants and artificial intelligence systems encounter a set of unique challenges. Many existing code…
AI

From Genes to Genius: Evolving Large Language Models with Nature’s Blueprint

3 Mins read
Large language models (LLMs) have transformed artificial intelligence with their superior performance on various tasks, including natural language understanding and complex reasoning….
AI

Limbic AI's Generative AI–Enabled Therapy Support Tool Improves Cognitive Behavioral Therapy Outcomes

2 Mins read
Recent advancements in generative AI are creating exciting new possibilities in healthcare, especially within mental health services, where patient engagement is often…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *