AI

Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization

1 Mins read

Learning with identical train and test distributions has been extensively investigated both practically and theoretically. Much remains to be understood, however, in statistical learning under distribution shifts. This paper focuses on a distribution shift setting where train and test distributions can be related by classes of (data) transformation maps. We initiate a theoretical study for this framework, investigating learning scenarios where the target class of transformations is either known or unknown. We establish learning rules and algorithmic reductions to Empirical Risk Minimization (ERM), accompanied with learning guarantees. We obtain upper bounds on the sample complexity in terms of the VC dimension of the class composing predictors with transformations, which we show in many cases is not much larger than the VC dimension of the class of predictors. We highlight that the learning rules we derive offer a game-theoretic viewpoint on distribution shift: a learner searching for predictors and an adversary searching for transformation maps to respectively minimize and maximize the worst-case loss.


Source link

Related posts
AI

Meet LOTUS 1.0.0: An Advanced Open Source Query Engine with a DataFrame API and Semantic Operators

3 Mins read
Modern data programming involves working with large-scale datasets, both structured and unstructured, to derive actionable insights. Traditional data processing tools often struggle…
AI

This AI Paper from Microsoft and Oxford Introduce Olympus: A Universal Task Router for Computer Vision Tasks

2 Mins read
Computer vision models have made significant strides in solving individual tasks such as object detection, segmentation, and classification. Complex real-world applications such…
AI

OpenAI Researchers Propose Comprehensive Set of Practices for Enhancing Safety, Accountability, and Efficiency in Agentic AI Systems

3 Mins read
Agentic AI systems are fundamentally reshaping how tasks are automated, and goals are achieved in various domains. These systems are distinct from…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *