AI

UI-JEPA: Towards Active Perception of User Intent Through Onscreen User Activity

1 Mins read

Generating user intent from a sequence of user interface (UI) actions is a core challenge in comprehensive UI understanding. Recent advancements in multimodal large language models (MLLMs) have led to substantial progress in this area, but their demands for extensive model parameters, computing power, and high latency makes them impractical for scenarios requiring lightweight, on-device solutions with low latency or heightened privacy. Additionally, the lack of high-quality datasets has hindered the development of such lightweight models. To address these challenges, we propose UI-JEPA, a novel framework that employs masking strategies to learn abstract UI embeddings from unlabeled data through self-supervised learning, combined with an LLM decoder fine-tuned for user intent prediction. We also introduce two new UI-grounded multimodal datasets, “Intent in the Wild” (IIW) and “Intent in the Tame” (IIT), designed for few-shot and zero-shot UI understanding tasks. IIW consists of 1.7K videos across 219 intent categories, while IIT contains 914 videos across 10 categories. We establish the first baselines for these datasets, showing that representations learned using a JEPA-style objective, combined with an LLM decoder, can achieve user intent predictions that match the performance of state-of-the-art large MLLMs, but with significantly reduced annotation and deployment resources. Measured by intent similarity scores, UI-JEPA outperforms GPT-4 Turbo and Claude 3.5 Sonnet by 10.0% and 7.2% respectively, averaged across two datasets. Notably, UI-JEPA accomplishes the performance with a 50.5x reduction in computational cost and a 6.6x improvement in latency in the IIW dataset. These results underscore the effectiveness of UI-JEPA, highlighting its potential for lightweight, high-performance UI understanding.


Source link

Related posts
AI

A New Google DeepMind Research Reveals a New Kind of Vulnerability that Could Leak User Prompts in MoE Model

3 Mins read
The routing mechanism of MoE models evokes a great privacy challenge. Optimize LLM large language model performance by selectively activating only a…
AI

MIT Researchers Developed Heterogeneous Pre-trained Transformers (HPTs): A Scalable AI Approach for Robotic Learning from Heterogeneous Data

3 Mins read
In today’s world, building robotic policies is difficult. It often requires collecting specific data for each robot, task, and environment, and the…
AI

LLM-KT: A Flexible Framework for Enhancing Collaborative Filtering Models with Embedded LLM-Generated Features

3 Mins read
Collaborative Filtering (CF) is widely used in recommender systems to match user preferences with items but often struggles with complex relationships and…

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *