pfl-research: Simulation Framework for Accelerating Research in Private Federated Learning

1 Mins read

Federated Learning (FL) is an emerging ML training paradigm where clients own their data and collaborate to train a global model without revealing any data to the server and other participants.

Researchers commonly perform experiments in a simulation environment to quickly iterate on ideas. However, existing open-source tools do not offer the efficiency required to simulate FL on larger and more realistic FL datasets. We introduce pfl-research, a fast, modular, and easy-to-use Python framework for simulating FL. It supports TensorFlow, PyTorch, and non-neural network models, and is tightly integrated with state-of-the-art privacy algorithms.

We study the speed of open-source FL frameworks and show that pfl-research is 7-72× faster than alternative open-source frameworks on common cross-device setups. Such speedup will significantly boost the productivity of the FL research community and enable testing hypotheses on realistic FL datasets that were previously too resource intensive. We release a suite of benchmarks that evaluates an algorithm’s overall performance on a diverse set of realistic scenarios.

Source link

Related posts

An Efficient AI Approach to Memory Reduction and Throughput Enhancement in LLMs

2 Mins read
The efficient deployment of large language models (LLMs) necessitates high throughput and low latency. However, LLMs’ substantial memory consumption, particularly by the…

Accelerate Mixtral 8x7B pre-training with expert parallelism on Amazon SageMaker

12 Mins read
Mixture of Experts (MoE) architectures for large language models (LLMs) have recently gained popularity due to their ability to increase model capacity…
AI Selected for 2024 GitHub Accelerator: Enabling the Next Wave of Innovation in Enterprise RAG with Small Specialized Language Models

2 Mins read
It’s exciting to note that has been selected as one of the 11 outstanding open-source AI projects shaping the future of…



Leave a Reply

Your email address will not be published. Required fields are marked *